
In a triangle, the sum of the lengths of either two sides is always greater than the third side.
Considering \(ΔOAB\),
\(OA + OB > AB\) (i)
In \(ΔOBC\),
\(OB + OC > BC\) (ii)
In \(ΔOCD\),
\(OC + OD > CD\) (iii)
In \(ΔODA\),
\(OD + OA > DA\) (iv)
Adding equations (i), (ii), (iii), and (iv), we obtain
\(OA + OB + OB + OC + OC + OD + OD + OA > AB + BC + CD + DA\)
\(\Rightarrow\) \(2\;OA + 2\;OB + 2\;OC + 2\;OD > AB + BC + CD + DA\)
\(\Rightarrow\) \(2\;OA + 2\;OC + 2\;OB + 2\;OD > AB + BC + CD + DA\)
\(\Rightarrow\) \(2(OA + OC) + 2(OB + OD) > AB + BC + CD + DA\)
\(\Rightarrow\) \(2(AC) + 2(BD) > AB + BC + CD + DA\)
\(\Rightarrow\) \(2(AC + BD) > AB + BC + CD + DA\)
Yes, the given expression is true.



Using laws of exponents, simplify and write the answer in exponential form:
(i) 32 × 34 × 38 (ii) 615 ÷ 610 (iii) a3 × a2 (iv) 7x×72 (v) (52) ÷ 53 (vi) 25 × 55 (vii) a4 × b4 (viii) (34)3(ix) (220 ÷ 215)×23 (x) 8t ÷ 82
