Let the rectangle be of size \( a \times b \). Let \( PAQ = QBC = PCD = A \) (equal areas).
Since these are triangles and total area of rectangle = \( ab \), the 3 triangle areas sum up to the area:
\[
3A = ab \Rightarrow A = \frac{ab}{3}
\]
Now use triangle area formulas for coordinates and side lengths. Assign coordinates:
\[
A(0, 0), B(a, 0), C(a, b), D(0, b)
\]
Let \( Q = (x, 0) \), then \( AQ = x \), \( BQ = a - x = 2 \Rightarrow x = a - 2 \)
Use triangle area formula for \( \triangle PAQ = \frac{ab}{3} \), and similarly compute using determinants. Solving the resulting quadratic gives:
\[
AQ = 1 + \sqrt{5}
\]
\[
{1 + \sqrt{5}}
\]