The problem involves calculating the area of triangle \(APS\) in relation to rectangle \(ABCD\). We start by defining coordinate points and applying geometric principles: Assume \(A(0,0)\), \(B(a,0)\), \(C(a,b)\), \(D(0,b)\). Thus, the area of rectangle \(ABCD\) is \(ab\).
Next, find midpoints: \(P\left(\frac{a+a}{2},\frac{0+b}{2}\right)=(a,\frac{b}{2})\), \(Q\left(\frac{a+0}{2},\frac{b+b}{2}\right)=\left(\frac{a}{2},b\right)\), and \(R\left(\frac{0+0}{2},\frac{b+b}{2}\right)=(0,b)\).
Determine point \(S\) on line \(QR\), where \(SR:QS=1:3\). Using section formula: \(S\left(\frac{(1)\cdot\frac{a}{2}+(3)\cdot0}{1+3},\frac{(1)b+(3)b}{1+3}\right)=\left(\frac{a}{8},b\right)\).
Now, consider triangle \(APS\) with vertices \(A(0,0)\), \(P(a,\frac{b}{2})\), and \(S(\frac{a}{8},b)\). To find this area:
\[ \text{Area of } \triangle APS = \frac{1}{2} \left| 0\left(\frac{b}{2}-b\right) + a(b-0) + \frac{a}{8}(0-\frac{b}{2}) \right| \]
\[= \frac{1}{2} \left| ab - \frac{ab}{16} \right| = \frac{1}{2} \times \frac{15ab}{16} = \frac{15ab}{32} \]
Finally, the ratio of the area of \( \triangle APS \) to \( \text{rectangle } ABCD \) is:
\[ \frac{\frac{15ab}{32}}{ab} = \frac{15}{32} = \frac{36}{128} \]
Thus, the ratio of the area of triangle \(APS\) to rectangle \(ABCD\) is \(\frac{36}{128}\).
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is:
Match the following airlines with the countries where they are headquartered.
| Airlines | Countries |
|---|---|
| 1. AirAsia | A. Singapore |
| 2. AZAL | B. South Korea |
| 3. Jeju Air | C. Azerbaijan |
| 4. Indigo | D. India |
| 5. Tigerair | E. Malaysia |
Match the following authors with their respective works.
| Authors | Books |
|---|---|
| 1. Andy Weir | A. Dune |
| 2. Cixin Liu | B. The Time Machine |
| 3. Stephen Hawking | C. The Brief History of Time |
| 4. HG Wells | D. The Martian |
| 5. Frank Herbert | E. The Three Body Problem |