Correct answer: 130°
Explanation:
Given: \( \triangle ABC \sim \triangle PQR \) and \( \angle A = 50^\circ \) In similar triangles, corresponding angles are equal. So: \[ \angle A = \angle P = 50^\circ \] The sum of all angles in a triangle is: \[ \angle P + \angle Q + \angle R = 180^\circ \] Substituting \( \angle P = 50^\circ \): \[ 50^\circ + \angle Q + \angle R = 180^\circ \Rightarrow \angle Q + \angle R = 180^\circ - 50^\circ = 130^\circ \]
Hence, \( \angle Q + \angle R = {130^\circ} \)
If \( \triangle ODC \sim \triangle OBA \) and \( \angle BOC = 125^\circ \), then \( \angle DOC = ? \)