
In ∆APB and ∆APC,
∠APB = ∠APC (Each 90º)
AB =AC (Given)
AP = AP (Common)
∠∆APB ≅ ∠∆APC (Using RHS congruence rule)
∠B = C (By using CPCT)
Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ∆ PQR (see Fig. 7.40). Show that:
(i) ∆ BM≅∆ PQN
(ii) ∆ ABC≅∆ PQR

(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
ABCD is a quadrilateral in which AD = BC and ∠ DAB = ∠ CBA (see Fig. 7.17). Prove that
(i) ∆ ABD ≅ ∆ BAC
(ii) BD = AC
(iii) ∠ ABD = ∠ BAC.
