Step 1: Express the area in terms of $d_1,d_2$ and $QS$.
Since AB, CD, EF are parallel, $PQRS$ splits into two triangles with the same base $QS$: $\triangle PQS$ (between AB and CD) and $\triangle QRS$ (between CD and EF).
Hence
\[
[ PQRS ] \;=\; \tfrac12 d_1\cdot QS \;+\; \tfrac12 d_2\cdot QS \;=\; \tfrac12 (d_1+d_2)\,QS.
\]
Given $d_1:d_2=2:1$, let $d_1=2k,\; d_2=k$ with $k\in\mathbb{Z}^+$.
With area $30$,
\[
30=\tfrac12(3k)\,QS \;\Rightarrow\; QS=\frac{20}{k}. \tag{1}
\]
Step 2: Minimizing $SR$.
For fixed parallel lines, the shortest segment from CD to EF is the perpendicular distance $d_2=k$. The minimum of $SR$ occurs when $SR\perp$ (CD, EF), i.e., when $R$ is directly above $S$; thus
\[
SR_{\min}=k. \tag{2}
\]
Step 3: Find $QR$ when $SR$ is minimum.
With $R$ vertically above $S$, $QR$ is the hypotenuse of a right triangle with legs $QS$ (along CD) and $SR_{\min}=k$:
\[
QR=\sqrt{(QS)^2+k^2}=\sqrt{\left(\frac{20}{k}\right)^2+k^2}. \tag{3}
\]
To keep $SR$ as small as possible we choose the smallest integer $k$, namely $k=1$ (since both $d_1=2k$ and $d_2=k$ must be integers).
Then from (1)–(3):
\[
QS=20,\quad SR_{\min}=1,\quad QR=\sqrt{20^2+1^2}=\sqrt{401}\approx 20.0249\ldots
\]
which is \emph{slightly greater than $20$}.
Final Answer:
\[
\boxed{\text{(E) slightly greater than 20 units}}
\]