Which element of the 3d series has the lowest enthalpy of atomisation and why?
Methanol is produced by the reversible, gas-phase hydrogenation of carbon monoxide: \[ {CO} + 2{H}_2 \rightleftharpoons {CH}_3{OH} \] CO and H$_2$ are charged to a reactor, and the reaction proceeds to equilibrium at 453 K and 2 atm. The reaction equilibrium constant, which depends only on the temperature, is 1.68 at the reaction conditions. The mole fraction of H$_2$ in the product is 0.4. Assuming ideal gas behavior, the mole fraction of methanol in the product is ____________ (rounded off to 2 decimal places).
The residence-time distribution (RTD) function of a reactor (in min−1) is:
\[ E(t) = \begin{cases} 1 - 2t, & \text{if } t \leq 0.5\ \text{min} \\ 0, & \text{if } t > 0.5\ \text{min} \end{cases} \]
The mean residence time of the reactor is _____ min (rounded off to 2 decimal places).
Oil is extracted from mustard seeds having 20 wt% oil and 80 wt% solids, using hexane as a solvent. After extraction, the hexane-free residual cake contains 1 wt% oil. Assuming negligible dissolution of cake in hexane, the percentage oil recovery in hexane is ___________ % (rounded off to the nearest integer).
Is there any good show __________ television tonight? Select the most appropriate option to complete the above sentence.
Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]