Step 1: Write down the known values
Length, \( L = 2\, \text{m} \)
Cross-sectional area, \( A = 1\, \text{mm}^2 = 1 \times 10^{-6} \, \text{m}^2 \)
Force, \( F = 10\, \text{N} \)
Young's modulus, \( Y = 2 \times 10^{11} \, \text{N/m}^2 \)
Step 2: Recall the formula for extension \(\Delta L\)
\[ Y = \frac{F L}{A \Delta L} \quad \Rightarrow \quad \Delta L = \frac{F L}{A Y} \] Step 3: Substitute the values
\[ \Delta L = \frac{10 \times 2}{1 \times 10^{-6} \times 2 \times 10^{11}} = \frac{20}{2 \times 10^{5}} = 1 \times 10^{-4} \, \text{m} \] Step 4: Convert meters to millimeters
\[ 1 \times 10^{-4} \, \text{m} = 0.1 \, \text{mm} \] Wait, this contradicts the option selected as correct — let's verify carefully: Calculate: \[ \Delta L = \frac{F L}{A Y} = \frac{10 \times 2}{1 \times 10^{-6} \times 2 \times 10^{11}} = \frac{20}{2 \times 10^{5}} = 1 \times 10^{-4} \text{m} \] \(1 \times 10^{-4}\, \text{m} = 0.1\, \text{mm}\), which corresponds to option (1).
Correct Answer: (1) 0.1 mm
A steel wire of length 2 m and Young's modulus \( 2.0 \times 10^{11} \, \text{N/m}^2 \) is stretched by a force. If Poisson's ratio and transverse strain for the wire are \( 0.2 \) and \( 10^{-3} \) respectively, then the elastic potential energy density of the wire is \( \times 10^6\), in SI units .
Two slabs with square cross section of different materials $(1,2)$ with equal sides $(l)$ and thickness $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$ such that $\mathrm{d}_{2}=2 \mathrm{~d}_{1}$ and $l>\mathrm{d}_{2}$. Considering lower edges of these slabs are fixed to the floor, we apply equal shearing force on the narrow faces. The angle of deformation is $\theta_{2}=2 \theta_{1}$. If the shear moduli of material 1 is $4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, then shear moduli of material 2 is $\mathrm{x} \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, where value of x is _______ .