Step 1: Use the formula for maximum torque on a current loop.
Maximum torque is given by: \[ \tau = n I A B \] Where: \( n = 1 \) (since it's a single loop)
\( I = 1 \, \text{A} \)
\( B = 2\pi \times 10^{-4} \, \text{T} \)
\( A = \pi r^2 \) is the area of the loop
Step 2: Calculate the radius of the loop.
The wire forms a circle, so the circumference \( C = 2\pi r = 10 \Rightarrow r = \frac{10}{2\pi} = \frac{5}{\pi} \)
Step 3: Calculate the area.
\[ A = \pi r^2 = \pi \left(\frac{5}{\pi}\right)^2 = \frac{25}{\pi} \] Step 4: Calculate the torque.
\[ \tau = n I A B = 1 \times 1 \times \frac{25}{\pi} \times 2\pi \times 10^{-4} = 25 \times 2 \times 10^{-4} = 50 \times 10^{-4} \, \text{Nm} \] Step 5: Select the correct option.
The calculated torque is \(50 \times 10^{-4} \, \text{Nm}\), which matches option (2).