Step 1: Understanding the Concept:
For a string fixed at both ends, the resonance frequencies are integral multiples of the fundamental frequency (\( f_n = n \cdot f_1 \)). The difference between two successive resonance frequencies is equal to the fundamental frequency.
Step 2: Key Formula or Approach:
1. Fundamental Frequency: \( f_1 = f_{n+1} - f_n = \frac{v}{2L} \).
2. Wave Speed on String: \( v = \sqrt{\frac{T}{\mu}} \).
Step 3: Detailed Explanation:
1. Find Fundamental Frequency:
\[ f_1 = 550 \, Hz - 500 \, Hz = 50 \, Hz \]
2. Calculate Wave Speed (\( v \)):
Given \( T = 900 \, N \) and \( \mu = 9.0 \times 10^{-4} \, kg/m \).
\[ v = \sqrt{\frac{900}{9 \times 10^{-4}}} = \sqrt{\frac{100}{10^{-4}}} = \sqrt{10^6} = 1000 \, ms^{-1} \]
3. Calculate Length (L):
\[ f_1 = \frac{v}{2L} \implies 50 = \frac{1000}{2L} \]
\[ 100L = 1000 \]
\[ L = 10 \, m \]
Step 4: Final Answer:
The length of the wire is 10 m.