Phase 1: Constant angular acceleration (\(\alpha\)) from \(t=0\) to \(t=20\) s.
Starts from rest, so initial angular velocity \(\omega_0 = 0\).
At \(t_1=2\) s, angular velocity \(\omega_1 = 3.14\) rad/s.
Using \(\omega = \omega_0 + \alpha t\):
\(3.14 = 0 + \alpha(2) \Rightarrow \alpha = \frac{3.14}{2} = 1.57 \text{ rad/s}^2\).
(Note: \(1.57 \approx \pi/2\), and \(3.14 \approx \pi\). So \(\alpha = \pi/2 \text{ rad/s}^2\)).
Angular velocity at \(t_2=20\) s (when acceleration ceases):
\(\omega_{20} = \omega_0 + \alpha t_2 = 0 + (1.57)(20) = 31.4 \text{ rad/s}\) (or \(\pi/2 \times 20 = 10\pi\) rad/s).
Angular displacement (\(\Delta\theta_1\)) during this phase (\(0 \le t \le 20\) s):
\(\Delta\theta_1 = \omega_0 t_2 + \frac{1}{2}\alpha t_2^2 = 0 + \frac{1}{2}(1.57)(20)^2 = \frac{1}{2}(1.57)(400) = 1.57 \times 200 = 314 \text{ rad}\).
(Or \(\frac{1}{2}(\pi/2)(400) = 100\pi\) rad).
Phase 2: Constant angular velocity from \(t=20\) s to \(t=40\) s.
The acceleration ceases abruptly at \(t=20\)s, so the wheel continues to rotate with the angular velocity it had at \(t=20\)s.
Angular velocity \(\omega_{const} = \omega_{20} = 31.4\) rad/s (or \(10\pi\) rad/s).
Time duration for this phase \(\Delta t_2 = 40\text{s} - 20\text{s} = 20\text{s}\).
Angular displacement (\(\Delta\theta_2\)) during this phase:
\(\Delta\theta_2 = \omega_{const} \times \Delta t_2 = 31.4 \times 20 = 628 \text{ rad}\).
(Or \(10\pi \times 20 = 200\pi\) rad).
Total angular displacement from \(t=0\) to \(t=40\) s:
\(\Delta\theta_{total} = \Delta\theta_1 + \Delta\theta_2 = 314 + 628 = 942 \text{ rad}\).
(Or \(100\pi + 200\pi = 300\pi\) rad).
Number of revolutions:
1 revolution = \(2\pi\) radians.
Number of revolutions = \( \frac{\Delta\theta_{total}}{2\pi} \).
Using \(\pi \approx 3.14\):
\(\Delta\theta_{total} = 942 \text{ rad}\). \(2\pi \approx 2 \times 3.14 = 6.28\).
Number of revolutions = \( \frac{942}{6.28} \).
\(942 / 6.28 = (300 \times 3.14) / (2 \times 3.14) = 300/2 = 150\).
If we use \(\Delta\theta_{total} = 300\pi\), then Number of revolutions = \( \frac{300\pi}{2\pi} = 150 \).
This matches option (d).
\[ \boxed{150} \]