Concept: To convert a voltmeter into an ammeter, a shunt resistance is connected in parallel. Key idea:
Voltmeter full-scale current \( I_v = \frac{V}{R_v} \)
Shunt carries remaining current
Same voltage across voltmeter and shunt
Step 1: Find full-scale current of voltmeter Given: \[ V = 150\,\text{V}, \quad R_v = 300\,\Omega \] \[ I_v = \frac{V}{R_v} = \frac{150}{300} = 0.5\,\text{A} \] So, voltmeter allows maximum current of \( 0.5\,\text{A} \).
Step 2: Total current required Desired ammeter range: \[ I = 8\,\text{A} \] Current through shunt: \[ I_s = I - I_v = 8 - 0.5 = 7.5\,\text{A} \] Step 3: Voltage across shunt Voltage across voltmeter (and shunt in parallel): \[ V = I_v \times R_v = 0.5 \times 300 = 150\,\text{V} \] Step 4: Calculate shunt resistance \[ R_s = \frac{V}{I_s} = \frac{150}{7.5} = 20\,\Omega \] Final Answer: \[ \boxed{R_s = 20\,\Omega} \]
Define Curie temperature in magnetism.