The internal energy ($U$) of $n$ moles of an ideal gas is given by $U = n C_V T$, where $C_V$ is the molar specific heat at constant volume.
For an ideal gas, $C_V = \frac{f}{2}R$, where $f$ is the number of degrees of freedom and $R$ is the universal gas constant.
So, $U = n \frac{f}{2} RT$.
The total internal energy of a mixture of non-reacting gases is the sum of the internal energies of individual gases. All gases are assumed to be at the same temperature $T$.
1. Helium (He):
$n_{He} = 3$ moles.
He is a monatomic gas, so $f_{He} = 3$ (3 translational degrees of freedom).
$U_{He} = n_{He} \frac{f_{He}}{2} RT = 3 \times \frac{3}{2} RT = \frac{9}{2} RT$.
2. Argon (Ar):
$n_{Ar} = 1$ mole.
Ar is a monatomic gas, so $f_{Ar} = 3$.
$U_{Ar} = n_{Ar} \frac{f_{Ar}}{2} RT = 1 \times \frac{3}{2} RT = \frac{3}{2} RT$.
3. Nitrogen (N$_2$):
$n_{N_2} = 5$ moles.
N$_2$ is a diatomic gas. Ignoring vibrational modes, $f_{N_2} = 5$ (3 translational + 2 rotational).
$U_{N_2} = n_{N_2} \frac{f_{N_2}}{2} RT = 5 \times \frac{5}{2} RT = \frac{25}{2} RT$.
4. Hydrogen (H$_2$):
$n_{H_2} = 3$ moles.
H$_2$ is a diatomic gas. Ignoring vibrational modes, $f_{H_2} = 5$.
$U_{H_2} = n_{H_2} \frac{f_{H_2}}{2} RT = 3 \times \frac{5}{2} RT = \frac{15}{2} RT$.
Total internal energy $U_{total} = U_{He} + U_{Ar} + U_{N_2} + U_{H_2}$:
$U_{total} = \frac{9}{2} RT + \frac{3}{2} RT + \frac{25}{2} RT + \frac{15}{2} RT$.
$U_{total} = \left(\frac{9+3+25+15}{2}\right) RT = \left(\frac{12+40}{2}\right) RT = \left(\frac{52}{2}\right) RT$.
$U_{total} = 26 RT$.
\[ \boxed{26 RT} \]