Step 1: Relation between power and velocity.
Since \(P = Fv = m a v\) and \(a = \frac{dv}{dt}\):
\[
P = m v \frac{dv}{dt}
\]
\[ $\Rightarrow$ v \, dv = \frac{P}{m} dt
\]
Integrate both sides from \(0\) to \(v\) and \(0\) to \(t\):
\[
\frac{v^2}{2} = \frac{P t}{m} $\Rightarrow$ v = \sqrt{\frac{2Pt}{m}}
\]
Step 2: Relate distance and time.
\[
s = \int_0^t v\, dt = \int_0^t \sqrt{\frac{2P}{m}} t^{1/2} dt = \sqrt{\frac{2P}{m}} \frac{2}{3} t^{3/2}
\]
Rearrange for \(P\):
\[
P = \frac{9m s^2}{8t^3}
\]
Step 3: Substitute values.
\(m = 600\ \text{kg},\ s = 600\ \text{m},\ t = 60\ \text{s}\)
\[
P = \frac{9 \times 600 \times 600^2}{8 \times 60^3} = \frac{9 \times 600 \times 360000}{8 \times 216000} = \frac{1.944 \times 10^9}{1.728 \times 10^6} = 1125\, \text{W} = 1.125\, \text{kW}
\]
Rounded: \(1.13\, \text{kW}\).
Step 4: Conclusion.
Hence, the power \(P = 1.13\, \text{kW}\).


