Step 1: Finding the cross product.
A vector perpendicular to the plane containing \( \vec{A} \) and \( \vec{B} \) can be found by calculating the cross product \( \vec{A} \times \vec{B} \). 
The cross product calculation yields: \[ \vec{A} \times \vec{B} = \hat{i}(1 + 2) - \hat{j}(1 + 4) + \hat{k}(-1 - 2) = 3\hat{i} - 5\hat{j} - 3\hat{k} \]
Step 2: Finding the unit vector.
The magnitude of \( \vec{A} \times \vec{B} \) is: \[ \sqrt{3^2 + (-5)^2 + (-3)^2} = \sqrt{35} \] Thus, the unit vector is: \[ \frac{1}{\sqrt{35}}(3\hat{i} - 5\hat{j} - 3\hat{k}) \]
Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
If \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \, \mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, \mathbf{c} = \hat{i} - 2\hat{j} + \hat{k} \), \(\text{ then a vector of magnitude }\) \( \sqrt{22} \) \(\text{ which is parallel to }\) \( 2\mathbf{a} - \mathbf{b} + \mathbf{c} \) is:
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{a} \cdot \vec{c} = 2$ and $\vec{b} \cdot \vec{c} = 1$. If $|\vec{b}| = 1$, then the value of $|\vec{a}|$ is:
