The drift velocity is calculated using:
\[v_d = \frac{eE\tau}{m}\]
Using resistivity, $\tau$ can be derived from the relation:
\[\rho = \frac{m}{ne^2\tau}\]
Given $E = 1 \text{ V/m}$, $e = 1.6 \times 10^{-19} \text{ C}$, $\rho = 1.54 \times 10^{-8} \text{ }\Omega\cdot\text{m}$, $n = 5.8 \times 10^{28} \text{ m}^{-3}$, and $m = 9.11 \times 10^{-31} \text{ kg}$:
\[\tau = \frac{m}{\rho ne^2}\]
Substituting into $v_d$:
\[v_d = \frac{eE}{\rho n} = \frac{1.6 \times 10^{-19} \times 1}{1.54 \times 10^{-8} \times 5.8 \times 10^{28}} \approx 0.69 \text{ m/s}\]
Match List-I with List-II\[\begin{array}{|c|c|} \hline \textbf{Provision} & \textbf{Case Law} \\ \hline \text{(A) Strict Liability} & \text{(1) Ryland v. Fletcher} \\ \hline \text{(B) Absolute Liability} & \text{(II) M.C. Mehta v. Union of India} \\ \hline \text{(C) Negligence} & \text{(III) Nicholas v. Marsland} \\ \hline \text{(D) Act of God} & \text{(IV) MCD v. Subhagwanti} \\ \hline \end{array}\]
Match Fibre with Application.\[\begin{array}{|l|l|} \hline \textbf{LIST I} & \textbf{LIST II} \\ \textbf{Fibre} & \textbf{Application} \\ \hline \hline \text{A. Silk fibre} & \text{I. Fire retardant} \\ \hline \text{B. Wool fibre} & \text{II. Directional lustre} \\ \hline \text{C. Nomex fibre} & \text{III. Bulletproof} \\ \hline \text{D. Kevlar fibre} & \text{IV. Thermal insulation} \\ \hline \end{array}\]