A steel wire of length 2 m and Young's modulus \( 2.0 \times 10^{11} \, \text{N/m}^2 \) is stretched by a force. If Poisson's ratio and transverse strain for the wire are \( 0.2 \) and \( 10^{-3} \) respectively, then the elastic potential energy density of the wire is \( \times 10^6\), in SI units .
Two slabs with square cross section of different materials $(1,2)$ with equal sides $(l)$ and thickness $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$ such that $\mathrm{d}_{2}=2 \mathrm{~d}_{1}$ and $l>\mathrm{d}_{2}$. Considering lower edges of these slabs are fixed to the floor, we apply equal shearing force on the narrow faces. The angle of deformation is $\theta_{2}=2 \theta_{1}$. If the shear moduli of material 1 is $4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, then shear moduli of material 2 is $\mathrm{x} \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$, where value of x is _______ .
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)
