First, compute the modulus of the composite (Voigt model, for longitudinal direction):
\[
E_c = V_f E_f + (1 - V_f) E_m = 0.7 \cdot 90 + 0.3 \cdot 9 = 63 + 2.7 = 65.7 \, {GPa}
\]
Convert strain to decimal: \( \varepsilon = 0.5% = 0.005 \)
Stress:
\[
\sigma = E_c \cdot \varepsilon = 65.7 \cdot 10^3 \cdot 0.005 = 328.5 \, {MPa}
\]
Area = breadth × thickness = \(4 \times 1 = 4 \, {mm}^2 = 4 \times 10^{-6} \, {m}^2\)
Force:
\[
F = \sigma \cdot A = 328.5 \times 10^6 \cdot 4 \times 10^{-6} = 1314 \, {N}
\]