A two-level quantum system has energy eigenvalues
\( E_1 \) and \( E_2 \). A perturbing potential
\( H' = \lambda \Delta \sigma_x \) is introduced, where
\( \Delta \) is a constant having dimensions of energy,
\( \lambda \) is a small dimensionless parameter, and
\( \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \).
The magnitudes of the first and the second order corrections to
\( E_1 \) due to \( H' \), respectively, are:
Step 1: The first-order energy correction in perturbation theory is given by the expectation value of the perturbing Hamiltonian in the unperturbed state. Since \( \sigma_x \) connects the two states, the first-order correction to the energy is zero.
Step 2: The second-order correction is non-zero and is given by the formula: \[ E_1^{(2)} = \frac{\lambda^2 \Delta^2}{|E_1 - E_2|} \] This is the second-order energy correction due to the perturbation \( H' = \lambda \Delta \sigma_x \).
Consider a two-level system with energy states \( +\epsilon \) and \( -\epsilon \). The number of particles at \( +\epsilon \) level is \( N+ \) and the number of particles at \( -\epsilon \) level is \( N- \). The total energy of the system is \( E \) and the total number of particles is \( N = N+ + N- \). In the thermodynamic limit, the inverse of the absolute temperature of the system is:
(Given: \( \ln N! \approx N \ln N - N \))
The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is:
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:
In the transistor circuit shown in the figure, \( V_{BE} = 0.7 \, {V} \) and \( \beta_{DC} = 400 \). The value of the base current in \( \mu A \) (rounded off to one decimal place) is: