A two-level quantum system has energy eigenvalues
\( E_1 \) and \( E_2 \). A perturbing potential
\( H' = \lambda \Delta \sigma_x \) is introduced, where
\( \Delta \) is a constant having dimensions of energy,
\( \lambda \) is a small dimensionless parameter, and
\( \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \).
The magnitudes of the first and the second order corrections to
\( E_1 \) due to \( H' \), respectively, are:
Step 1: The first-order energy correction in perturbation theory is given by the expectation value of the perturbing Hamiltonian in the unperturbed state. Since \( \sigma_x \) connects the two states, the first-order correction to the energy is zero.
Step 2: The second-order correction is non-zero and is given by the formula: \[ E_1^{(2)} = \frac{\lambda^2 \Delta^2}{|E_1 - E_2|} \] This is the second-order energy correction due to the perturbation \( H' = \lambda \Delta \sigma_x \).