Let the length of a small element of tube be dx. Mass of this element
$\hspace15mm dm= \frac {M}{L}dx$
where Mis mass of filled liquid and Lis length of tube.
Force on this element,
$\hspace15mm dF=dm \times x \omega^2$
$\hspace15mm \int _0^FdF= \frac {M}{L}\omega^2 \int _0^Lxdx$
or $\hspace15mm F= \frac {M}{L}\omega^2 \bigg [\frac {L^2}{2}\bigg ]=\frac {ML\omega^2}{2}$
or $\hspace15mm F=\frac {1}{2}ML\omega^2$