
Given: \( \angle BAC = 90^\circ \) because \( BC \) is the diameter of the circle.
Let \( AB = a \) cm and \( AC = b \) cm.
Since \( \angle BAC = 90^\circ \), triangle \( ABC \) is a right-angled triangle, and we can apply the Pythagoras Theorem:
\[ BC = \sqrt{a^2 + b^2} \]
Since \( BC \) is the diameter of the circle, its length is \( 2r \), where \( r \) is the radius of the circle. So,
\[ 2r = \sqrt{a^2 + b^2} \Rightarrow 4r^2 = a^2 + b^2 \]
Area of triangle \( ABC \) is: \[ \text{Area} = \frac{1}{2} \times a \times b \]
Now, we multiply and divide this expression by \( a^2 + b^2 \):
\[ \text{Area} = \frac{ab}{2(a^2 + b^2)} \times (a^2 + b^2) \]
Substitute \( a^2 + b^2 = 4r^2 \):
\[ = \frac{ab}{2(a^2 + b^2)} \times 4r^2 = \frac{ab}{(a^2 + b^2)} \times 2r^2 \]
Therefore, \[ \text{Area} = \frac{2abr^2}{a^2 + b^2} \]
So, the correct option is (A): \( \boxed{\frac{2abr^2}{a^2 + b^2}} \)
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: