\(∠BAC\) = 90° (\(BC\) is the diameter of the circle)
Let \(AB = a\) cm, then \(AC = b\) cm.
Apply Pythagoras theorem,
\(BC =\sqrt {a^2 + b^2}\)
\(2r =\sqrt {a^2 + b^2}\)
\(4r^2 =a^2 +b^2\)
Area of the triangle = \(\frac 12×a×b\)
\(⇒ \frac {ab}{2(a^2+b^2)}× (a^2 +b^2)\)
\(⇒ \frac {ab}{2(a^2+b^2)}× 4r^2\)
\(⇒ \frac {ab}{(a^2+b^2)}× 2r^2\)
\(⇒ \frac {2abr^2}{(a^2+b^2)}\)
So, the correct option is (A): \(\frac{2abr^2}{a^2+b^2}\)
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$