Step 1: Recall Manning’s equation.
\[
Q = \frac{1}{n} A R^{2/3} S^{1/2}
\]
where,
\(Q\) = discharge (m\(^3\)/s),
\(n\) = Manning’s roughness coefficient,
\(A\) = flow area (m\(^2\)),
\(R = \frac{A}{P}\) = hydraulic radius (m),
\(P\) = wetted perimeter (m),
\(S\) = bed slope.
Step 2: Define section geometry.
Let depth of flow = \(d\).
- Bed width = \(2d\).
- Side slope = 2H:1V → horizontal projection = \(2d\).
Thus,
\[
\text{Top width} = 2d + 2(2d) = 6d
\]
\[
\text{Area} \, (A) = \frac{1}{2} ( \text{Top width} + \text{Bottom width}) \times d
\]
\[
A = \frac{1}{2} (6d + 2d) d = 4d^2
\]
Step 3: Wetted perimeter.
Two side lengths = \(\sqrt{(2d)^2 + d^2} = \sqrt{5} d\).
\[
P = 2d + 2(\sqrt{5} d) = 2d (1 + \sqrt{5})
\]
Step 4: Hydraulic radius.
\[
R = \frac{A}{P} = \frac{4d^2}{2d(1+\sqrt{5})} = \frac{2d}{1+\sqrt{5}}
\]
Step 5: Substitute values into Manning’s equation.
Given: \(Q = 20 \, \text{m}^3/\text{s}, n = 0.01, S = 1/400 = 0.0025\).
\[
20 = \frac{1}{0.01} (4d^2) \left(\frac{2d}{1+\sqrt{5}}\right)^{2/3} (0.0025)^{1/2}
\]
\[
20 = 100 \times 4d^2 \left(\frac{2d}{3.236}\right)^{2/3} (0.05)
\]
\[
20 = 20 \times 4d^2 \left(0.618 d\right)^{2/3}
\]
\[
20 = 80 d^2 (0.618^{2/3}) d^{2/3}
\]
\[
20 = 80 (0.731) d^{(2 + 2/3)}
\]
\[
20 = 58.5 \, d^{8/3}
\]
Step 6: Solve for depth.
\[
d^{8/3} = \frac{20}{58.5} = 0.342
\]
Raise both sides to power \(3/8\):
\[
d = (0.342)^{3/8}
\]
\[
d = 1.62 \, \text{m}
\]
Final Answer:
\[
\boxed{1.62 \, \text{m}}
\]