Given:
- Power of transmitter, \( P = 10 \, \text{kW} = 10 \times 10^{3} = 10^{4} \, \text{W} \)
- Wavelength of radio waves, \( \lambda = 500 \, \text{m} \)
- Planck’s constant, \( h = 6.63 \times 10^{-34} \, \text{Js} \)
- Speed of light, \( c = 3 \times 10^{8} \, \text{m/s} \)
Step 1: Calculate the energy of one photon emitted:
\[
E = \frac{hc}{\lambda}
\]
Substitute the values:
\[
E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{500} = \frac{1.989 \times 10^{-25}}{500} = 3.978 \times 10^{-28} \, \text{J}
\]
Step 2: Calculate the number of photons emitted per second:
The transmitter power \( P \) is the energy emitted per second.
So, number of photons emitted per second \( n \) is:
\[
n = \frac{P}{E} = \frac{10^{4}}{3.978 \times 10^{-28}} \approx 2.51 \times 10^{31}
\]
Step 3: Order of magnitude:
\[
n \approx 10^{31}
\]
Therefore, the number of photons emitted per second by the transmitter is of the order of:
\[
\boxed{10^{31}}
\]