Let:
Total selling price of the mixture: \[ \text{SP} = 264 \] Profit percentage: \[ 10\% \] Thus, the total cost price (CP) of the mixture is: \[ \text{CP} = \frac{264 \times 100}{110} = 240 \] The price per litre of the mixture: \[ \frac{240}{10} = 24 \ \text{per litre} \]
The total cost is: \[ (x + 8)a + xb = 240 \]
We are told: \[ b \le a \] To maximize \( x \), we minimize \( a \). If the total volume is \( 10 \) litres, the smallest integer \( a \) can be is \( 5 \), so \( b = 5 \).
\[ (x + 8)(5) + x(5) = 240 \] \[ 5x + 40 + 5x = 240 \] \[ 10x + 40 = 240 \] \[ 10x = 200 \quad \Rightarrow \quad x = 20 \]
✅ Final Answer: The maximum cost of paint B is ₹20 per litre.