Since the number is a 3-digit number divisible by 10, it must end with \(0\). Let the number be: \[ N = 100a + 10b + 0, \quad \text{with } a > b > 0. \] So the digits are in strictly descending order: \(a > b > 0\).
The rearranged number must also be divisible by 10 \(\Rightarrow\) it must also end in \(0\). Hence the new number is either: \[ N' = 100b + 10a \quad \text{or} \quad N' = 100a + 10\cdot 0. \] But the second choice equals the original, so not valid. Therefore, the valid rearrangement is: \[ N' = 100b + 10a. \]
We need: \[ N - N' \equiv 0 \pmod{40}. \] That is: \[ (100a + 10b) - (100b + 10a) = 90a - 90b = 90(a-b). \] So, \[ 90(a-b) \equiv 0 \pmod{40}. \]
\[ 90(a-b) \equiv 0 \pmod{40} \quad \Rightarrow \quad (a-b) \equiv 0 \pmod{4}. \]
Since \(a > b > 0\), digits \(a,b\) must be from 9 down to 1. Possible pairs \((a,b)\) with \(a-b = 4, 8\):
Total = 6 cases.
\[ \boxed{6} \]