\(T_m = \dfrac{2\pi}{\sqrt{3}}\, \text{s}\)
Step 1: Apply the time period formula for a physical pendulum.
\[ T = 2\pi \sqrt{\frac{I_p}{mgx}} \] where \(I_p = I_{cm} + mx^2\), and for a uniform rod, \(I_{cm} = \frac{1}{12}mL^2\). Given \(L = 2\sqrt{3}\, \text{m}\), so \(I_{cm} = m\).
Step 2: Substitute and minimize \(T\).
\[ T = 2\pi \sqrt{\frac{m(x^2 + 1)}{mgx}} = 2\pi \sqrt{\frac{x^2 + 1}{gx}} \] For minimum \(T\), differentiate with respect to \(x\) and set to zero: \[ \frac{d}{dx}\left(\frac{x^2 + 1}{x}\right) = 0 \Rightarrow \frac{2x^2 - (x^2 + 1)}{x^2} = 0 \Rightarrow x^2 = 1 \Rightarrow x = 1 \]
Step 3: Compute minimum period.
\[ T_m = 2\pi \sqrt{\frac{(x_m^2 + 1)}{g x_m}} = 2\pi \sqrt{\frac{(\frac{3}{4} + 1)}{10 \times \frac{\sqrt{3}}{2}}} = \dfrac{2\pi}{\sqrt{5}}\, \text{s} \]
Step 4: Conclusion.
Hence, \(x_m = 1\, \text{m}\) and \(T_m = \dfrac{2\pi}{\sqrt{5}}\, \text{s}\).
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is : 
