Step 1: Express given conditions in terms of work per minute.
Let the rates of P1, P2, P3, P4 be \(a, b, c, d\) respectively (tank/minute).
From conditions:
\[
a+b+c = \frac{1}{15} \quad (1)
\]
\[
a+b+d = \frac{1}{20} \quad (2)
\]
\[
a+c = \frac{1}{30} \quad (3)
\]
Step 2: Subtract equations (1) and (3).
\[ (a+b+c) - (a+c) = \frac{1}{15} - \frac{1}{30} \] \[ b = \frac{1}{30} \]
Step 3: Find values of (a+c) and (a+b).
From (3): \[ a+c = \frac{1}{30} \] From (1): \[ a+b+c = \frac{1}{15} \] Substitute \(b=\frac{1}{30}\): \[ a+c + \frac{1}{30} = \frac{1}{15} \] \[ a+c = \frac{1}{30} \quad \text{(consistent with (3))} \]
Step 4: Find d.
From (2): \[ a+b+d = \frac{1}{20} \] Substitute \(b=\frac{1}{30}\): \[ a+d = \frac{1}{20} - \frac{1}{30} = \frac{1}{60} \]
Step 5: Find total work rate when all pipes are open.
\[ a+b+c+d = (a+c) + (b) + (d) \] We know: \[ a+c = \frac{1}{30}, \quad b=\frac{1}{30}, \quad a+d=\frac{1}{60} \] So: \[ a+b+c+d = \frac{1}{30} + \frac{1}{30} + \frac{1}{60} \] \[ = \frac{2}{30} + \frac{1}{60} = \frac{4}{60} + \frac{1}{60} = \frac{5}{60} = \frac{1}{12} \]
Step 6: Calculate total time.
If rate = \(\frac{1}{12}\), then time = 12 minutes. But careful: we must check options (in minutes and seconds). \[ 12 \, \text{minutes} = 12 \, \text{min 0 sec} \]
\[ \boxed{12 \, \text{minutes}} \]