Step 1: Recall the Bragg condition for cubic systems.
For a cubic system:
\[
\sin^2 \theta \propto \frac{h^2 + k^2 + l^2}{a^2}
\]
Here, $(hkl)$ are Miller indices and $a$ is the lattice constant.
Step 2: Allowed reflections for FCC lattice.
In FCC structures, reflections are allowed only when $h, k, l$ are either all odd or all even.
Thus the allowed planes are: (111), (200), (220), (311), (222), (400), etc.
Step 3: Calculate relative $h^2+k^2+l^2$ values.
\[
\begin{aligned}
(111) & : 1^2+1^2+1^2 = 3
(200) & : 2^2+0+0 = 4
(220) & : 2^2+2^2+0 = 8
(311) & : 3^2+1^2+1^2 = 11
(222) & : 2^2+2^2+2^2 = 12
\end{aligned}
\]
Step 4: Normalize the given $\sin^2 \theta$ values.
Take ratios with respect to the first value ($0.136$):
\[
\frac{0.185}{0.136} \approx 1.36,
\frac{0.504}{0.136} \approx 3.71,
\frac{0.544}{0.136} \approx 4.00
\]
Step 5: Compare with theoretical ratios.
Theoretical ratios (relative to 3 for (111)):
\[
\frac{4}{3} \approx 1.33,
\frac{8}{3} \approx 2.67,
\frac{11}{3} \approx 3.67,
\frac{12}{3} = 4.00
\]
Given experimental ratios:
\[
1,\; 1.36,\; 3.71,\; 4.00
\]
This matches closely with theoretical ratios:
\[
1,\; \frac{4}{3},\; \frac{11}{3},\; 4
\]
Step 6: Identify missing reflection.
The ratio $\frac{8}{3} = 2.67$ (corresponding to (220)) is absent in the experimental data.
Final Answer:
\[
\boxed{(220)}
\]