Let the total number of questions be \( T \).
Required Probability:
\[ \frac{x}{T} + \frac{T - x}{T} \cdot \frac{1}{2} \] \[ = \frac{x}{T} + \frac{T - x}{2T} \] \[ = \frac{x}{x + \frac{T - x}{2}} \] \[ = \frac{x}{\frac{2x + T - x}{2}} \] \[ = \frac{2x}{T + x} \]
Given:
\[ \frac{2x}{T + x} = \frac{5}{6} \] \[ \Rightarrow 12x = 5(T + x) \] \[ \Rightarrow 12x = 5T + 5x \] \[ \Rightarrow 7x = 5T \] \[ \Rightarrow \frac{x}{T} = \frac{5}{7} \]
Final Answer:
\[ \frac{5}{7} \]