Horizontal component of tension balances centripetal force.
The free body diagram of the given situation is shown.
Taking the vertical and horizontal component of forces,
we have $T \sin \theta=\frac{m v^{2}}{r} \ldots$ (i)
$T \cos \theta=m g \ldots$ (ii)
where linear velocity $v=r \omega$
and $\sin \theta=\frac{r}{l}$
Putting these values in (i),
we get $T \times \frac{r}{l}=m \omega^{2} T$
We know $\omega=2 \pi n$,
we have $\therefore T=m(2 \pi n)^{2} l$
$\Rightarrow T=m\left(2 \pi \times \frac{2}{\pi}\right)^{2} l$
$\Rightarrow T=16\, m L .$