Given:
Step 1: Relationship Between Lateral and Longitudinal Strain
Poisson’s ratio is given by:
\[ \nu = \frac{\text{lateral strain}}{\text{longitudinal strain}} \]
Rearranging for longitudinal strain \( \varepsilon \):
\[ \varepsilon = \frac{\varepsilon_l}{\nu} = \frac{10^{-3}}{0.25} = 4 \times 10^{-3} \]
Step 2: Elastic Energy Density Formula
The elastic energy density \( U \) is given by:
\[ U = \frac{1}{2} Y \varepsilon^2 \]
Substituting values:
\[ U = \frac{1}{2} \times (2 \times 10^{11}) \times (4 \times 10^{-3})^2 \]
\[ U = \frac{1}{2} \times (2 \times 10^{11}) \times (16 \times 10^{-6}) \]
\[ U = \frac{32 \times 10^5}{2} = 16 \times 10^5 \text{ J/m}^3 \]
Answer: The correct option is D (16 × 105 J/m3).