Question:

A steel wire of length 3 m and a copper wire of length 2.2 m are connected end to end. When the combination is stretched by a force, the net elongation is 1.05 mm. If the area of cross-section of each wire is 6 mm², then the load applied is: (Young’s moduli of steel and copper are respectively \(2 \times 10^{11} \, \text{Nm}^{-2}\) and \(1.1 \times 10^{11} \, \text{Nm}^{-2}\)).

Show Hint

The total elongation in a series combination of wires is the sum of the elongations of individual wires under the same force.
Updated On: Mar 11, 2025
  • \(180 N\)
  • \(90 N\)
  • \(135 N\)
  • \(120 N\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To determine the load applied to the combination of steel and copper wires, we need to use the concept of Young's modulus, which relates stress and strain in a material. 1. Given Data: - Length of steel wire, \( L_s = 3 \, \text{m} \) - Length of copper wire, \( L_c = 2.2 \, \text{m} \) - Total elongation, \( \Delta L = 1.05 \, \text{mm} = 1.05 \times 10^{-3} \, \text{m} \) - Cross-sectional area of each wire, \( A = 6 \, \text{mm}^2 = 6 \times 10^{-6} \, \text{m}^2 \) - Young’s modulus of steel, \( Y_s = 2 \times 10^{11} \, \text{Nm}^{-2} \) - Young’s modulus of copper, \( Y_c = 1.1 \times 10^{11} \, \text{Nm}^{-2} \) 2. Calculate the Elongation for Each Wire: - The total elongation is the sum of the elongations of the steel and copper wires: \[ \Delta L = \Delta L_s + \Delta L_c \] - Using Young's modulus formula \( \Delta L = \frac{F L}{A Y} \), we can express the elongations as: \[ \Delta L_s = \frac{F L_s}{A Y_s} \] \[ \Delta L_c = \frac{F L_c}{A Y_c} \] - Therefore: \[ \Delta L = \frac{F L_s}{A Y_s} + \frac{F L_c}{A Y_c} \] \[ 1.05 \times 10^{-3} = F \left( \frac{L_s}{A Y_s} + \frac{L_c}{A Y_c} \right) \] 3. Substitute the Given Values: \[ 1.05 \times 10^{-3} = F \left( \frac{3}{6 \times 10^{-6} \times 2 \times 10^{11}} + \frac{2.2}{6 \times 10^{-6} \times 1.1 \times 10^{11}} \right) \] \[ 1.05 \times 10^{-3} = F \left( \frac{3}{1.2 \times 10^{6}} + \frac{2.2}{6.6 \times 10^{5}} \right) \] \[ 1.05 \times 10^{-3} = F \left( 2.5 \times 10^{-6} + 3.333 \times 10^{-6} \right) \] \[ 1.05 \times 10^{-3} = F \left( 5.833 \times 10^{-6} \right) \] 4. Solve for the Force \( F \): \[ F = \frac{1.05 \times 10^{-3}}{5.833 \times 10^{-6}} \approx 180 \, \text{N} \] 5. Final Answer: - The load applied is: \[ \boxed{180 \, \text{N}} \] This corresponds to option (1).
Was this answer helpful?
0
0