To determine the load applied to the combination of steel and copper wires, we need to use the concept of Young's modulus, which relates stress and strain in a material.
1. Given Data:
- Length of steel wire, \( L_s = 3 \, \text{m} \)
- Length of copper wire, \( L_c = 2.2 \, \text{m} \)
- Total elongation, \( \Delta L = 1.05 \, \text{mm} = 1.05 \times 10^{-3} \, \text{m} \)
- Cross-sectional area of each wire, \( A = 6 \, \text{mm}^2 = 6 \times 10^{-6} \, \text{m}^2 \)
- Young’s modulus of steel, \( Y_s = 2 \times 10^{11} \, \text{Nm}^{-2} \)
- Young’s modulus of copper, \( Y_c = 1.1 \times 10^{11} \, \text{Nm}^{-2} \)
2. Calculate the Elongation for Each Wire:
- The total elongation is the sum of the elongations of the steel and copper wires:
\[
\Delta L = \Delta L_s + \Delta L_c
\]
- Using Young's modulus formula \( \Delta L = \frac{F L}{A Y} \), we can express the elongations as:
\[
\Delta L_s = \frac{F L_s}{A Y_s}
\]
\[
\Delta L_c = \frac{F L_c}{A Y_c}
\]
- Therefore:
\[
\Delta L = \frac{F L_s}{A Y_s} + \frac{F L_c}{A Y_c}
\]
\[
1.05 \times 10^{-3} = F \left( \frac{L_s}{A Y_s} + \frac{L_c}{A Y_c} \right)
\]
3. Substitute the Given Values:
\[
1.05 \times 10^{-3} = F \left( \frac{3}{6 \times 10^{-6} \times 2 \times 10^{11}} + \frac{2.2}{6 \times 10^{-6} \times 1.1 \times 10^{11}} \right)
\]
\[
1.05 \times 10^{-3} = F \left( \frac{3}{1.2 \times 10^{6}} + \frac{2.2}{6.6 \times 10^{5}} \right)
\]
\[
1.05 \times 10^{-3} = F \left( 2.5 \times 10^{-6} + 3.333 \times 10^{-6} \right)
\]
\[
1.05 \times 10^{-3} = F \left( 5.833 \times 10^{-6} \right)
\]
4. Solve for the Force \( F \):
\[
F = \frac{1.05 \times 10^{-3}}{5.833 \times 10^{-6}} \approx 180 \, \text{N}
\]
5. Final Answer:
- The load applied is:
\[
\boxed{180 \, \text{N}}
\]
This corresponds to option (1).