The fundamental frequency ($f_1$) of a stretched wire fixed at both ends is given by:
$f_1 = \frac{1}{2L} \sqrt{\frac{T_{force}}{\mu}}$
where $L$ is the length of the wire, $T_{force}$ is the tension in the wire (using $T_{force}$ to avoid confusion with period), and $\mu$ is the mass per unit length of the wire.
Mass per unit length $\mu = \rho A$, where $\rho$ is the density and $A$ is the cross-sectional area of the wire.
So, $f_1 = \frac{1}{2L} \sqrt{\frac{T_{force}}{\rho A}}$.
Young's modulus ($Y$) is given by $Y = \frac{\text{Stress}}{\text{Strain}} = \frac{T_{force}/A}{\text{Strain}}$.
From this, Stress $T_{force}/A = Y \times \text{Strain}$.
So $T_{force} = Y \times A \times \text{Strain}$.
Substitute this into the frequency equation:
$f_1 = \frac{1}{2L} \sqrt{\frac{Y \times A \times \text{Strain}}{\rho A}} = \frac{1}{2L} \sqrt{\frac{Y \times \text{Strain}}{\rho}}$.
The term $\sqrt{\frac{Y \times \text{Strain}}{\rho}}$ is the speed of the transverse wave ($v$) on the wire, because $v = \sqrt{\text{Stress}/\rho} = \sqrt{(Y \times \text{Strain})/\rho}$.
Given values:
Length $L = 1.25 \text{ m}$.
Elastic strain $= 0.14% = \frac{0.14}{100} = 0.0014 = 1.4 \times 10^{-3}$.
Density of steel $\rho = 7.7 \times 10^3 \text{ kgm}^{-3}$.
Young's modulus of steel $Y = 2.2 \times 10^{11} \text{ Nm}^{-2}$.
Calculate the term under the square root (which is $v^2$):
$\frac{Y \times \text{Strain}}{\rho} = \frac{(2.2 \times 10^{11} \text{ Nm}^{-2}) \times (1.4 \times 10^{-3})}{7.7 \times 10^3 \text{ kgm}^{-3}}$.
$= \frac{2.2 \times 1.4}{7.7} \times \frac{10^{11} \times 10^{-3}}{10^3} = \frac{3.08}{7.7} \times 10^{11-3-3} = \frac{3.08}{7.7} \times 10^5$.
$\frac{3.08}{7.7} = \frac{308}{770}$. We can simplify this: $\frac{308 \div 77}{770 \div 77} = \frac{4}{10} = 0.4$.
So, $\frac{Y \times \text{Strain}}{\rho} = 0.4 \times 10^5 = 4 \times 10^4 \text{ (m/s)}^2$.
Now take the square root to find $v$:
$v = \sqrt{\frac{Y \times \text{Strain}}{\rho}} = \sqrt{4 \times 10^4} = 2 \times 10^2 = 200 \text{ m/s}$.
Finally, calculate the fundamental frequency $f_1$:
$f_1 = \frac{v}{2L} = \frac{200 \text{ m/s}}{2 \times 1.25 \text{ m}}$.
$2L = 2 \times 1.25 = 2.5 \text{ m}$.
$f_1 = \frac{200}{2.5} = \frac{2000}{25}$.
$\frac{2000}{25} = \frac{20 \times 100}{25} = 20 \times 4 = 80 \text{ Hz}$.
\[ \boxed{80 \text{ Hz}} \]