The thermal stress in the rod is given by: \[ \text{Stress} = Y \alpha \Delta T, \] where:
\( Y = 2 \times 10^{11} \, \text{N/m}^2 \) (Young's modulus),
\( \alpha = 10^{-5} \, \text{K}^{-1} \) (coefficient of linear expansion),
\( \Delta T = 200 \, \text{K} \) (temperature change).
The force due to thermal stress is: \[ F = \text{Stress} \cdot A = Y \alpha \Delta T \cdot A. \] Substitute \( A = 10^{-4} \, \text{m}^2 \): \[ F = (2 \times 10^{11}) (10^{-5}) (200) (10^{-4}). \] Simplify: \[ F = 4 \times 10^4 \, \text{N}. \]
Final Answer: The compressive tension produced in the rod is: \[ \boxed{4 \times 10^4 \, \text{N}}. \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.