The volume of the pyramid is given as 400 cm\(^3\). The formula for the volume of a square pyramid is:
\[
V = \frac{1}{3} \times \text{Base Area} \times \text{Height}
\]
We are given that the base side of the pyramid is 10 cm. Therefore, the base area is:
\[
\text{Base Area} = \text{side}^2 = 10 \times 10 = 100 \, \text{cm}^2
\]
Substitute this value into the volume formula:
\[
400 = \frac{1}{3} \times 100 \times \text{Height}
\]
Solving for the height:
\[
\text{Height} = \frac{400 \times 3}{100} = 12 \, \text{cm}
\]
Now that we have the height, we can calculate the slant height (QR) of the pyramid using the Pythagorean theorem. In the right triangle \( \triangle QPR \), where \( PR = 5 \, \text{cm} \) (half of the base side), and the height of the pyramid is 12 cm:
\[
QR = \sqrt{(12)^2 + (5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \, \text{cm}
\]
Now, calculate the Curved Surface Area (C.S.A) of the pyramid using the formula:
\[
\text{C.S.A} = \frac{1}{2} \times \text{Base Perimeter} \times \text{Slant Height}
\]
The perimeter of the base is:
\[
\text{Base Perimeter} = 4 \times \text{side} = 4 \times 10 = 40 \, \text{cm}
\]
Substitute the values into the formula:
\[
\text{C.S.A} = \frac{1}{2} \times 40 \times 13 = 260 \, \text{cm}^2
\]
Finally, the Total Surface Area (T.S.A) of the pyramid is:
\[
\text{T.S.A} = \text{C.S.A} + \text{Base Area} = 260 + 100 = 360 \, \text{cm}^2
\]
Final Answer: The correct answer is (c) 360 cm\(^2\).