Here, Area $A=l^{2}=(12\, cm)^{2}$
$=1.4\times 10^{-2}\,m^{2}$
$R=0.60\, \Omega$,
$ B_{1}=0.10\, T$,
$\theta=45^{\circ}$
$B_{2}=0$,
$dt=0.6\, s$
Initial flux, $\phi_{1}=B_{1}A\, cos\, \theta$
$=0.10 \times1.4\times10^{-2}\times cos\, 45^{\circ}$
$= 9.8 \times 10^{-4}\, Wb$
Final flux, $\phi_{2}=0$
Induced emf, $\varepsilon=\frac{\left|d\phi\right|}{dt}=\frac{\left|\phi_{2}-\phi_{1}\right|}{dt}$
$=\frac{\left|9.8\times10^{-4}\right|}{0.6\,s}=1.6\times10^{-3}\,V $
Current, $I=\frac{\varepsilon}{R}=\frac{1.6\times10^{-3}}{0.6}$
$2.67\times10^{-3}\,A$