Step 1: Given data.
Side of square loop $a = 0.10 \, m$, area $A = a^2 = 0.01 \, m^2$
Resistance $R = 0.5 \, \Omega$
Magnetic field $B = 0.01 \, T$
Angle between $B$ and area vector = $45^\circ$ (since along north-east).
Step 2: Initial and final flux.
Flux $\Phi = B A \cos\theta$
\[
\Phi_i = 0.01 \times 0.01 \times \cos 45^\circ = 1 \times 10^{-4} \, Wb
\]
\[
\Phi_f = 0
\]
Step 3: Induced emf.
Faraday’s law:
\[
\mathcal{E} = \frac{\Delta \Phi}{\Delta t} = \frac{1 \times 10^{-4}}{0.70} \approx 1.43 \times 10^{-4} \, V
\]
Step 4: Induced current.
\[
I = \frac{\mathcal{E}}{R} = \frac{1.43 \times 10^{-4}}{0.5} \approx 2.86 \times 10^{-4} \, A
\]
Step 5: Induced charge.
\[
Q = I \times t = 2.86 \times 10^{-4} \times 0.70 \approx 2.0 \times 10^{-4} \, C
\]
Step 6: Conclusion.
- $\Phi_i = 1 \times 10^{-4} \, Wb$, $\Phi_f = 0$
- $\mathcal{E} = 1.43 \times 10^{-4} \, V$
- $I = 2.86 \times 10^{-4} \, A$
- $Q = 2.0 \times 10^{-4} \, C$