Key fact (isoperimetric principle).
Among all plane figures with a fixed perimeter, the circle encloses the greatest area.
Quantitative comparison (regular \(n\)-gon formula).
For a regular \(n\)-gon with perimeter \(P\), side \(s=P/n\), apothem \(a=\dfrac{s}{2}\cot\left(\dfrac{\pi}{n}\right)\), and area
\[
A_n=\frac12\cdot P \cdot a
= \frac{P^2}{4n}\cot\!\left(\frac{\pi}{n}\right).
\]
Compute for the given shapes:
\[
\begin{aligned}
A_{\text{square}}&=\frac{P^2}{16},
A_{\text{hex}}&=\frac{P^2}{24}\cot\!\left(\frac{\pi}{6}\right)
=\frac{P^2}{24}\,(\sqrt{3})\approx \frac{P^2}{13.856},
A_{\text{oct}}&=\frac{P^2}{32}\cot\!\left(\frac{\pi}{8}\right)
=\frac{P^2}{32}\,(1+\sqrt{2})\approx \frac{P^2}{13.257},
A_{\text{circle}}&=\frac{P^2}{4\pi}\approx \frac{P^2}{12.566}.
\end{aligned}
\]
Since \(\dfrac{1}{12.566}>\dfrac{1}{13.257}>\dfrac{1}{13.856}>\dfrac{1}{16}\), the circle’s area is the largest, followed by the octagon, hexagon, and square.
\[
\boxed{\text{Circle}}
\]