Step 1: Work done in stretching a spring
The work done in stretching a spring from an initial extension \( x_1 \) to a final extension \( x_2 \) is given by:
\[
W = \frac{1}{2} k x_2^2 - \frac{1}{2} k x_1^2.
\]
Given:
- Spring constant, \( k = 200 \) N/m,
- Initial extension, \( x_1 = 10 \) cm = \( 0.1 \) m,
- Final extension, \( x_2 = 20 \) cm = \( 0.2 \) m.
Step 2: Calculating the work done
Substituting the values:
\[
W = \frac{1}{2} \times 200 \times (0.2)^2 - \frac{1}{2} \times 200 \times (0.1)^2.
\]
\[
W = \frac{1}{2} \times 200 \times 0.04 - \frac{1}{2} \times 200 \times 0.01.
\]
\[
W = 100 \times 0.04 - 100 \times 0.01.
\]
\[
W = 4 - 1 = 3 { J}.
\]
Step 3: Conclusion
Thus, the work required to stretch the spring further by another 10 cm is:
\[
3 { J}.
\]