The work done in stretching a spring is given by the elastic potential energy formula:
\[
W = \frac{1}{2} k (x_f^2 - x_i^2)
\]
where
\( k = 5 \times 10^3 \) Nm\(^{-1} \),
\( x_i = 10 \) cm = 0.1 m,
\( x_f = 20 \) cm = 0.2 m.
Substituting the values:
\[
W = \frac{1}{2} \times 5000 \times (0.2^2 - 0.1^2)
\]
\[
= \frac{1}{2} \times 5000 \times (0.04 - 0.01)
\]
\[
= \frac{1}{2} \times 5000 \times 0.03
\]
\[
= \frac{5000 \times 0.03}{2} = \frac{150}{2} = 75 \text{ N-m}
\]
Thus, the required work is 75 N-m.