For a spherical surface, the lens-maker's equation is given by: \[ \frac{1}{f} = (n_2 - n_1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \] where \( n_1 \) and \( n_2 \) are the refractive indices of the medium on either side of the surface, \( R_1 \) is the radius of curvature of the surface, and \( R_2 \) is the radius of curvature of the second surface. In this case, we are dealing with a spherical convex surface, so \( R_2 = \infty \) (since it is an open surface), and the equation simplifies to: \[ \frac{1}{f} = \left( n_{\text{glass}} - n_{\text{air}} \right) \frac{1}{R} \] Substitute \( n_{\text{glass}} = 1.5 \) and \( n_{\text{air}} = 1 \): \[ \frac{1}{f} = (1.5 - 1) \frac{1}{R} = \frac{0.5}{R} \] Thus, the focal length is: \[ f = \frac{2R}{1} \] Since the object is placed at a distance \( \frac{R}{2} \) from the surface, we can use the lens formula: \[ \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \] where \( u = -\frac{R}{2} \) (object distance is negative), and \( f = \frac{2R}{1} \). Substituting the values: \[ \frac{1}{\frac{2R}{1}} = \frac{1}{v} - \frac{1}{-\frac{R}{2}} \] Simplifying: \[ \frac{1}{2R} = \frac{1}{v} + \frac{2}{R} \] \[ \frac{1}{v} = \frac{1}{2R} - \frac{2}{R} = -\frac{3}{2R} \] Thus, the image distance is: \[ v = -\frac{2R}{3} \] The negative sign indicates that the image is virtual, formed on the same side as the object. Therefore, the image is virtual, formed at a distance \( \frac{2R}{3} \) behind the surface.
When light travels from an optically denser medium to an optically rarer medium, at the interface it is partly reflected back into the same medium and partly refracted to the second medium. The angle of incidence corresponding to an angle of refraction 90° is called the critical angle (ic) for the given pair of media. This angle is related to the refractive index of medium 1 with respect to medium 2. Refraction of light through a prism involves refraction at two plane interfaces. A relation for the refractive index of the material of the prism can be obtained in terms of the refracting angle of the prism and the angle of minimum deviation. For a thin prism, this relation reduces to a simple equation. Laws of refraction are also valid for refraction of light at a spherical interface. When an object is placed in front of a spherical surface separating two media, its image is formed. A relation between object and image distance, in terms of refractive indices of two media and the radius of curvature of the spherical surface can be obtained. Using this relation for two surfaces of lens, ’lensemaker formula’ is obtained.
Regulation of lac operon by repressor is referred to as:
Explain how the addition of lactose in the medium regulates the switching on of the lac operon in bacteria.
Read the following passage and answer the questions that follow. According to evolutionary theory, every evolutionary change involves the substitution of a new gene for the old one and the new allele arises from the old one. Continuous accumulation of changes in the DNA coding for proteins leads to evolutionary differences. The chemical composition of DNA is basically the same in all living beings, except for differences in the sequence of nitrogenous bases. Given below are percentage relative similarities between human DNA and DNA of other vertebrates:
(a) What is the term used for the substitution of a new gene for the old one and the new allele arising from the old one during evolutionary process?
(b) Which one of the following holds true for the data provided in the above table?
(c) [(i)] To which category of evolution (divergent or convergent) does the following relationship belong? Justify your answer.
Human and Rhesus Monkey
OR
[(ii)] Differentiate between Convergent and Divergent evolution.
Answer the following questions:
[(i)] Explain the structure of a mature embryo sac of a typical flowering plant.
[(ii)] How is triple fusion achieved in these plants?
OR
[(i)] Describe the changes in the ovary and the uterus as induced by the changes in the level of pituitary and ovarian hormones during menstrual cycle in a human female.