Step 1: Write volume of sphere.
\[
V=\frac{4}{3}\pi r^3
\]
Step 2: Differentiate w.r.t. time \(t\).
\[
\frac{dV}{dt}=\frac{d}{dt}\left(\frac{4}{3}\pi r^3\right)
=4\pi r^2 \frac{dr}{dt}
\]
Step 3: Substitute given values.
\[
r=5,\quad \frac{dr}{dt}=2
\]
\[
\frac{dV}{dt}=4\pi (5)^2(2)
=4\pi \cdot 25 \cdot 2
=200\pi
\]
Final Answer:
\[
\boxed{200\pi}
\]