Step 1: Understand the bulk modulus formula
Bulk modulus \( B \) is defined as:
\[
B = - \frac{\text{Pressure change} \, (\Delta P)}{\text{Relative volume change} \, \left(\frac{\Delta V}{V}\right)}
\]
Where:
\( \Delta P \) = applied pressure change,
\( \Delta V \) = change in volume,
\( V \) = original volume.
Step 2: Convert given values to SI units
- Volume \( V = 2000 \, \text{cm}^3 = 2000 \times 10^{-6} = 2 \times 10^{-3} \, \text{m}^3 \)
- Change in volume \( \Delta V = 5 \times 10^{-2} \, \text{cm}^3 = 5 \times 10^{-8} \, \text{m}^3 \)
- Pressure \( \Delta P = 15 \, \text{atm} = 15 \times 1.013 \times 10^5 = 1.52 \times 10^6 \, \text{Pa} \)
Step 3: Calculate relative volume change
\[
\frac{\Delta V}{V} = \frac{5 \times 10^{-8}}{2 \times 10^{-3}} = 2.5 \times 10^{-5}
\]
Step 4: Calculate bulk modulus
\[
B = \frac{1.52 \times 10^{6}}{2.5 \times 10^{-5}} = 6.08 \times 10^{10} \, \text{Pa} = 6 \times 10^{10} \, \text{Nm}^{-2}
\]
Step 5: Conclusion
The bulk modulus of the material of the spherical ball is \( 6 \times 10^{10} \, \text{Nm}^{-2} \).