A sphere of radius \( R \) has a uniform charge density \( \rho \). A sphere of smaller radius \( \frac{R}{2} \) is cut out from the original sphere, as shown in the figure. The center of the cut-out sphere lies at \( z = \frac{R}{2} \). After the smaller sphere has been cut out, the magnitude of the electric field at \( z = -\frac{R}{2} \) is \( \frac{\rho R}{n \epsilon_0} \). The value of the integer \( n \) is: 



At a particular temperature T, Planck's energy density of black body radiation in terms of frequency is \(\rho_T(\nu) = 8 \times 10^{-18} \text{ J/m}^3 \text{ Hz}^{-1}\) at \(\nu = 3 \times 10^{14}\) Hz. Then Planck's energy density \(\rho_T(\lambda)\) at the corresponding wavelength (\(\lambda\)) has the value \rule{1cm}{0.15mm} \(\times 10^2 \text{ J/m}^4\). (in integer)
[Speed of light \(c = 3 \times 10^8\) m/s]
(Note: The unit for \(\rho_T(\nu)\) in the original problem was given as J/m³, which is dimensionally incorrect for a spectral density. The correct unit J/(m³·Hz) or J·s/m³ is used here for the solution.)