Using the Stefan-Boltzmann Law:
\[
P = \sigma A T^4
\]
where \( P = 30 \, \text{kW} = 30 \times 10^3 \, \text{W} \), \( A \) is the surface area of the sphere, and \( T \) is the temperature.
The surface area of a sphere is given by:
\[
A = 4 \pi r^2
\]
Substitute \( r = 0.03 \, \text{m} \):
\[
A = 4 \pi (0.03)^2 \approx 0.0113 \, \text{m}^2
\]
Now use the Stefan-Boltzmann equation to solve for \( T \):
\[
30 \times 10^3 = (5.67 \times 10^{-8}) \times 0.0113 \times T^4
\]
Solving for \( T \):
\[
T^4 \approx \frac{30 \times 10^3}{(5.67 \times 10^{-8}) \times 0.0113} \approx 4.6 \times 10^3
\]
Thus, \( T \approx 4600 \, \text{K} \).