We can use Raoult's Law to find the molar mass of the solute. Raoult's Law states:
\[
\frac{P_{\text{solvent}}}{P_{\text{solvent, pure}}} = \frac{n_{\text{solute}}}{n_{\text{solution}}}
\]
Where:
- \( P_{\text{solvent}} \) is the vapor pressure of the solution,
- \( P_{\text{solvent, pure}} \) is the vapor pressure of the pure solvent,
- \( n_{\text{solute}} \) is the number of moles of solute,
- \( n_{\text{solution}} \) is the number of moles of the solution.
Step 1: Calculate the mole fraction of the solute:
\[
\frac{P_{\text{solvent}}}{P_{\text{solvent, pure}}} = 1 - \frac{31.84}{32} = 0.005
\]
Step 2: Use this value to find the moles of solute:
\[
\frac{n_{\text{solute}}}{n_{\text{solution}}} = 0.005 \quad \Rightarrow \quad n_{\text{solute}} = 0.005 \times \left( \frac{200}{18} \right)
\]
This gives:
\[
n_{\text{solute}} = 0.005 \times 11.11 = 0.0555 \text{ mol}
\]
Step 3: Calculate the molar mass:
\[
\text{Molar mass of solute} = \frac{\text{mass of solute}}{n_{\text{solute}}} = \frac{5 \, \text{g}}{0.0555 \, \text{mol}} = 90.05 \, \text{g/mol}
\]
So, the molar mass of the solute is 90.05 g/mol.