Standard electrode potential for \( \text{Sn}^{4+}/\text{Sn}^{2+} \) couple is +0.15 V and that for the \( \text{Cr}^{3+}/\text{Cr} \) couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be:
To calculate the cell potential (\( E^\circ_{\text{cell}} \)), we use the standard electrode potentials of the given redox couples.
Given data:
\( E^\circ_{\text{Sn}^{4+}/\text{Sn}^{2+}} = +0.15V \)
\( E^\circ_{\text{Cr}^{3+}/\text{Cr}} = -0.74V \)
(a.)Write the anode and cathode reactions and the overall cell reaction occurring in a lead storage battery during its use.
List-I | List-II | ||
(A) | ![]() | (I) | ![]() |
(B) | ![]() | (II) | CrO3 |
(C) | ![]() | (III) | KMnO4/KOH, \(\Delta\) |
(D) | ![]() | (IV) | (i) O3 (ii) Zn-H2O |
If the monochromatic source in Young's double slit experiment is replaced by white light,
1. There will be a central dark fringe surrounded by a few coloured fringes
2. There will be a central bright white fringe surrounded by a few coloured fringes
3. All bright fringes will be of equal width
4. Interference pattern will disappear
An electrochemical cell is a device that is used to create electrical energy through the chemical reactions which are involved in it. The electrical energy supplied to electrochemical cells is used to smooth the chemical reactions. In the electrochemical cell, the involved devices have the ability to convert the chemical energy to electrical energy or vice-versa.