The relationship between the kinetic energy (\( K \)), moment of inertia (\( I \)), and angular velocity (\( \omega \)) is given by:
\[K = \frac{1}{2} I \omega^2\]Now, considering the ratio of the kinetic energies of a sphere and a cylinder, we can write:
\[\frac{ K_{\text{sphere}}}{K_{\text{cylinder}}} = \frac{I_{\text{sphere}}}{I_{\text{cylinder}}} \left( \frac{\omega_{\text{sphere}}}{\omega_{\text{cylinder}}} \right)^2\]Substitute the moments of inertia for a solid sphere and a solid cylinder. The moment of inertia of a solid sphere is:
\[I_{\text{sphere}} = \frac{2}{5} M R^2\]And the moment of inertia of a solid cylinder is:
\[I_{\text{cylinder}} = \frac{1}{2} M R^2\]Now substitute these into the energy ratio equation:
\[\frac{ K_{\text{sphere}}}{K_{\text{cylinder}}} = \frac{\frac{2}{5} M R^2}{\frac{1}{2} M R^2} \left( \frac{\omega}{2 \omega} \right)^2\]Simplifying the equation, we get:
\[= \frac{\frac{2}{5}}{\frac{1}{2}} \left( \frac{1}{2} \right)^2\]Now, simplify the fractions and powers:
\[= \frac{2}{5} \times \frac{2}{1} \times \frac{1}{4}\]Finally, multiplying the terms gives:
\[= \frac{4}{5} \times \frac{1}{4} = \frac{1}{5}\]Thus, the ratio of the kinetic energies is:
\[1 : 5\]This means that the kinetic energy of the sphere is \( 1/5 \)th of that of the cylinder under the given conditions.
Given:
- A solid sphere of mass $m$ and radius $R$ rotating about its diameter with angular speed $\omega$
- A solid cylinder of same mass and radius rotating about its axis with angular speed $2\omega$
Rotational Kinetic Energy formula:
\(E = \frac{1}{2} I \omega^2\)
Moment of Inertia (I):
- For solid sphere about diameter:
\(I_{\text{sphere}} = \frac{2}{5} m R^2\)
- For solid cylinder about its axis:
\(I_{\text{cylinder}} = \frac{1}{2} m R^2\)
Step 1: Rotational KE of sphere
\(E_{\text{sphere}} = \frac{1}{2} \cdot \frac{2}{5} m R^2 \cdot \omega^2 = \frac{1}{5} m R^2 \omega^2\)
Step 2: Rotational KE of cylinder
Angular speed is $2\omega$, so:
\(E_{\text{cylinder}} = \frac{1}{2} \cdot \frac{1}{2} m R^2 \cdot (2\omega)^2 = \frac{1}{4} m R^2 \cdot 4\omega^2 = m R^2 \omega^2\)
Step 3: Ratio of kinetic energies
\(\frac{E_{\text{sphere}}}{E_{\text{cylinder}}} = \frac{\frac{1}{5} m R^2 \omega^2}{m R^2 \omega^2} = \frac{1}{5}\)
Final Answer:
\(\boxed{1:5}\)
In a Vernier caliper, \(N+1\) divisions of vernier scale coincide with \(N\) divisions of main scale. If 1 MSD represents 0.1 mm, the vernier constant (in cm) is: