Step 1: Volume of the cylinder.
The cylinder has radius \(r = \tfrac{14}{2} = 7 \, \text{cm}\), height \(h = 10 \, \text{cm}\).
\[
V_{\text{cylinder}} = \pi r^2 h = \pi (7^2)(10) = 490\pi \, \text{cm}^3
\]
Step 2: Volumes of cones (in ratio 3:4).
Let the two cones have volumes in ratio 3:4.
\[
V_1 = \frac{3}{7} \times 490\pi = 210\pi, \quad V_2 = \frac{4}{7} \times 490\pi = 280\pi
\]
Step 3: Relation between volume and radius of cones.
For a cone:
\[
V = \tfrac{1}{3}\pi r^2 h
\]
Here, \(h = 10\).
For cone 1:
\[
210\pi = \tfrac{1}{3}\pi r_1^2 (10) \;\Rightarrow\; r_1^2 = 63 \;\Rightarrow\; r_1 = \sqrt{63}
\]
For cone 2:
\[
280\pi = \tfrac{1}{3}\pi r_2^2 (10) \;\Rightarrow\; r_2^2 = 84 \;\Rightarrow\; r_2 = \sqrt{84}
\]
Step 4: Flat surface area before and after.
- For cylinder: flat surface area = area of top + bottom = \(2 \pi r^2\).
\[
A_{\text{cylinder}} = 2 \pi (7^2) = 98\pi
\]
- For cones: flat surface area = area of base circles = \(\pi r_1^2 + \pi r_2^2\).
\[
A_{\text{cones}} = \pi(63) + \pi(84) = 147\pi
\]
Step 5: Percentage change.
\[
%\;\text{Change} = \frac{147\pi - 98\pi}{98\pi} \times 100 = \frac{49\pi}{98\pi} \times 100 = 50%
\]
\[
\boxed{\text{Percentage increase = 50%}}
\]