In this problem, we are dealing with the concept of flotation stability. The stability of a floating body depends on the relationship between the center of gravity (\( G \)), the center of buoyancy (\( B \)), and the metacentre (\( M \)). Let’s break down the important concepts:
1. Metacentre (\( M \)):
The metacentre is a point where the buoyant force (the upward force exerted by the fluid on the body) acts when the body is slightly tilted. The metacentre is the point of intersection of the vertical line through the center of buoyancy \( B \) when the body is tilted, with the axis of symmetry of the body in its equilibrium position.
2. Centre of Gravity (\( G \)):
The center of gravity is the point where the total weight of the body can be considered to act. It is the point where the force of gravity is effectively concentrated.
3. Centre of Buoyancy (\( B \)):
The center of buoyancy is the point where the buoyant force (or upward force) acts. This point is the centroid of the displaced fluid volume. It depends on the shape and size of the object submerged in the fluid.
Condition for Stability:
- For the body to be stable, the metacentre \( M \) must lie above the center of gravity \( G \). This condition ensures that when the body is tilted slightly, the buoyant force will create a restoring moment to return the body to its original position.
- The metacentric height \( MG \) is the distance between the metacentre \( M \) and the center of gravity \( G \). A higher metacentric height results in greater stability.
- Restoring Moment: When the body is tilted, the buoyant force must create a moment (a rotational force) that acts to restore the body to its upright position. This happens when the metacentre \( M \) lies above the center of gravity \( G \).
Conclusion:
For a floating body to return to its equilibrium position after being tilted, the metacentre \( M \) must be above the center of gravity \( G \), and the restoring moment must oppose the tilting force. Therefore, the center of gravity \( G \) should lie below the metacentre \( M \).
Thus, the correct option is:
\[ \boxed{(A) \, MG \, \text{is the metacentric height and} \, G \, \text{should lie below} \, M} \]
A fixed control volume has four one-dimensional boundary sections (1, 2, 3, and 4). For a steady flow inside the control volume, the flow properties at each section are tabulated below:
The rate of change of energy of the system which occupies the control volume at this instant is \( E \times 10^6 \, {J/s} \). The value of \( E \) (rounded off to 2 decimal places) is ........
A liquid flows under steady and incompressible flow conditions from station 1 to station 4 through pipe sections P, Q, R, and S as shown in the figure. Consider, \( d \), \( V \), and \( h \) represent the diameter, velocity, and head loss, respectively, in each pipe section with subscripts ‘P’, ‘Q’, ‘R’, and ‘S’. \( \Delta h \) represents the head difference between the inlet (station 1) and outlet (station 4). All the pipe sections are placed on the same horizontal plane for which the figure shows the top view.
(Insert diagram here, if possible)
Figure shows the steady and incompressible flow of a fluid in the direction of the arrow from section A to section D. Three pipe connectors are to be placed between sections at A and D having Total Energy Line (TEL) and Hydraulic Grade Line (HGL) as depicted in the figure. Consider, \( g \), \( P \), \( Q \), \( V \), \( \gamma \), and \( Z \) denote gravitational acceleration, pressure, volume flow rate, velocity, specific weight, and elevation of the centerline of the pipe connectors from the datum, respectively. Which one of the following options, in sequence, indicates the correct nature of connectors between sections A and B, B and C, and C and D in the direction of flow?
Group-I shows different two-dimensional bodies and Group-II mentions their total drag coefficient \( C_d \) based on frontal area while facing parallel flow of fluid having Reynolds number \( Re \geq 10^4 \) along the direction of the arrow. The bodies are placed symmetrically with respect to the flow direction. Which one of the following options identifies the correct match between Group-I and Group-II, as per the concept of degree of streamlining?
In the figures given below, L and H indicate low and high pressure centers, respectively; PGF, CoF and CeF indicate Pressure Gradient Force, Coriolis Force and Centrifugal Force, respectively; \( V \) is Velocity. [The arrows indicate only the directions but not the magnitudes of the forces and velocity.]
Which of the following is/are the correct representation(s) of the directions of various forces and velocity in the gradient wind balance in the northern hemisphere?
Which of the following is the correct form of the mass divergence form of the continuity equation for a compressible fluid? [In the given equations, \( \rho \) is the density and \( \nabla \) the three-dimensional velocity vector of the fluid.]
[(i)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \times (\rho \mathbf{v}) = 0$
[(ii)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$
[(iii)] $\displaystyle \frac{\partial \mathbf{v}}{\partial t} + \rho \cdot \nabla \mathbf{v} = 0$
[(iv)] $\displaystyle \frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = 0$
The vertical (depth) profiles for three parameters P1, P2, and P3 in the northern Indian Ocean are given in the figure below. The values along the x-axis are the normalized values of the parameters and y-axis is the depth (m).
Identify the parameters P1, P2, and P3 from the options given below.